

Daily Tutorial Sheet-15

Level-3

159.(A)
$$P \propto T^3$$

$$PT^{-3} = k$$
 for adiabatic process, $P^{1-\gamma} \cdot T^{\gamma} = k$

$$\Rightarrow \qquad P \cdot T^{\gamma/1 - \gamma} = k \qquad \Rightarrow \qquad \frac{\gamma}{1 - \gamma} = -3 \qquad \Rightarrow \qquad \gamma = \frac{3}{2}$$

160.(B) According to the first law of thermodynamics
$$\Delta U = q - w$$
 In isothermal process, $\Delta U = 0$

$$\therefore \qquad q = -w \quad \text{or} \qquad w = -nRT_1 \ln \frac{V_2}{V_1}$$

$$\therefore$$
 q = 0

We know that

$$\Delta S = \frac{q_{rev}}{T}$$

$$\therefore \qquad \mathbf{q}_{rev} = \mathsf{T}\Delta \mathsf{S}$$

$$\therefore \qquad q_{rev} = nR \ln \frac{V_2}{V_1}$$

$$\Delta S = \frac{q_{rev}}{T} = \frac{nRT_1}{T_1} ln \frac{V_2}{V_1} = nR ln \frac{V_2}{V_1} \label{eq:deltaS}$$

163.(A)
$$w = q = P_1(V_2 - V_1)$$

164.(D) For path
$$(D + E)$$

$$\Delta S = nR \ln \frac{V_2}{V_1}$$